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Why do people seek anonymity?

1. Violation of Laws and

Terms of Service?

2. Principle?

3. Safety?

A Forte, N Andalibi, R Greenstadt. Privacy, Anonymity, and Perceived Risk in Open Collaboration: A Study of Tor Users and

Wikipedians in Proceedings of the 2017 ACM Conference on Computer Supported Cooperative Work and Social Computing

(CSCW 2017). https://dl.acm.org/doi/10.1145/2998181.29982733
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Service provider perspective

1. Concerns about harassment

2. Impact of identity policies can be hard

to see

3. Perspective of vulnerable populations

may be unknown

4. Platforms see a “closure = safety”

versus “openness = risk” trade-off

Nora McDonald and Andrea Forte. 2020. The Politics of Privacy Theories: Moving from Norms to Vulnerabilities. Proceedings

of the 2020 ACM Conference on Human Factors in Computing Systems. (CHI 2020)

https://doi.org/10.1145/3313831.3376167 N McDonald, BM Hill, R Greenstadt, A Forte. Privacy, Anonymity, and

Perceived Risk in Open Collaboration: A Study of Service Providers in Proceedings of the 2019 ACM Conference on Human

Factors in Computing Systems (CHI 2019). https://doi.org/10.1145/3290605.3300901
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Natural Experiment: Enable Account Requirement
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Figure 2: Visualizations of our model predicted values for prototypical wikis for all
four outcomes. To represent the effect of an “average” wiki in our sample, trend lines
reflect a fitted regression model of window weeks and the cut-off on the predicted
values from each of our models reported in Table 1. We do not plot predicted values
corresponding to H4 because the estimates align so closely with those for H3 (M3a
and M3b).
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Hidden Costs and Spill-over

Identity policy changes can deter

positive participation

BM Hill, A Shaw. The Hidden Costs of Requiring Accounts: Quasi-Experimental Evidence From Peer Production.

Communication Research. Preprint: https://arxiv.org/abs/2111.10688

https://arxiv.org/abs/2111.10688
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But anonymity-seekers may be a lot like everyone else

• Context: Wikipedia

• 4-group comparison:

Newcomers

Anonymity-seekers using Tor

Contributors without accounts

Accountholders

• Anonymity-seekers at the same

or slightly better quality than

newcomers, non-account holders

• Different topics (more politics,

religion, tech, less American

football)
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Fig. 5. A non-parametric LOESS curve over time. We use feature injection
to instruct the ORES Good Faith model to treat all edits as if they were made
by a newly created user account.

TABLE V
LOGISTIC REGRESSION USING A FEATURE-INJECTED ORES MODEL.

FIRST-TIME EDITORS SERVED AS THE OMITTED CATEGORY.

Good Faith Non-Damaging
Intercept 0.87∗ 0.27∗

[0.82; 0.92] [0.22; 0.31]
Tor-based Editors 0.10∗ 0.14∗

[0.03; 0.17] [0.07; 0.20]
IP-based Editors 0.01 0.07∗

[−0.06; 0.08] [0.01; 0.14]
Registered Editors 0.70∗ 0.68∗

[0.62; 0.79] [0.61; 0.76]
AIC 26819.97 35414.08
BIC 26853.08 35447.18
Log Likelihood -13405.98 -17703.04
Deviance 7541.53 7395.66
Num. obs. 29057 29059
∗ indicates that 0 is outside the 95% confidence interval

measure; we omit the Non-Damaging ORES model because
the lines are extremely similar. This visualization shows that
Tor, IP, and First-time editors are all comparable, with Tor
editors appearing to make slightly higher quality contributions
than First-time and IP editors, particularly in the latter parts
of the data. We used logistic regression to test for statistical
differences, treating First-time editors as the baseline category
as they most closely resemble our feature injection scenario.
The results of our model are reported in Tab. V.

The positive coefficient for Tor in both Good Faith and Non-
Damaging scenarios indicates that Tor users are slightly better
contributors than our baseline of First-time editors by the
ORES measurement. Although the differences are statistically
significant, the estimated chance that a given edit will be
Good Faith at the baseline (new account) is 70.5%. whereas
the likelihood that an edit will be Good Faith if it originates
from a Tor editor is 72.5%. We believe that the estimated
2% margin is unlikely to be practically significant. For the
Non-Damaging model, we likewise find statistically significant

differences between Tor edits and our comparison groups but
also find that the practical effects are small. Our models predict
higher average rates of Non-Damaging edits for Tor editors
(60.1% for Tor editors versus 56.7% for First-time editors)
and IP editors (58.4%). For both models, contributions from
Registered editors are estimated to be of high quality, with a
prediction of 82.8% Good Faith and 72.1% Non-Damaging.
These results provide additional evidence in support of our
hypothesis that Tor editors, IP editors, and First-time editors
are quite similar in their overall behavior but that quality levels
of contributions from Registered editors are higher.

B. Comparison of Hand-coded Results to ORES Results

Given that we performed two different kinds of analysis
to identify Non-Damaging edits (i.e., hand-coding the edits,
and scoring via the ORES machine learning platform), we
can examine the extent to which these two measures agree.
Doing so is valuable because it can indicate whether the ORES
classifications used by Wikipedia are systematically biased
against contributors from Tor editors. As with our analysis
in §VI-A, we used feature injection to instruct ORES to treat
all edits in the hand-coded sample used in §V-E as if they
were being made by newly Registered editors. We then used
these data to compare the ORES prediction with and without
feature injection to our manual assessment for all four user
groups by generating receiver operating characteristic (ROC)
curves. We have included the full curves in our appendix in
Fig. 8.

Table VI reports model performance in the form of area
under the curves (AUC) for the ROC curves for each of
our comparison groups. These results indicate that there is
substantial room for improvement in ORES. Using feature
injection, ORES performs best relative to our hand-coded data
when predicting the quality of edits performed by IP editors
(AUC = 0.811 for Non-Damaging), less well for Tor editors
(AUC = 0.758), and even less well for First-time editors
(AUC = 0.704) but, strikingly, worst for Registered editors
(AUC = 0.663).

When we examined a small sample of edits where our
hand-coding and ORES disagreed, we found there were often
good reasons for the disagreement. Our hand-coding process
included doing work that ORES does not do, such as noticing
when links were to personal or spam websites and weighing
the context of the edit on the page against our own understand-
ing of appropriate and correct encyclopedic content. These
results suggest that machine learning tools such as ORES have
a limited ability to assess the quality of edits without human
intervention.

Systematic bias in ORES could result in higher rates of
rejection of contributions from some groups of editors. Feature
injection as we have done it treats registered editors as if they
are new—essentially removing a “benefit of the doubt” based
on their longevity in the community. Table VI shows that fea-
ture injection has very modest effects on model performance—
dropping AUC by 0.01 for Registered editors and by 0.004

C Tran, K Champion, A Forte, BM Hill, R Greenstadt. Are anonymity-seekers just like everybody else? An analysis of

contributions to Wikipedia from Tor in 2020 IEEE Symposium on Security and Privacy (SP) Preprint:

https://arxiv.org/pdf/1904.04324.pdf
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measure; we omit the Non-Damaging ORES model because
the lines are extremely similar. This visualization shows that
Tor, IP, and First-time editors are all comparable, with Tor
editors appearing to make slightly higher quality contributions
than First-time and IP editors, particularly in the latter parts
of the data. We used logistic regression to test for statistical
differences, treating First-time editors as the baseline category
as they most closely resemble our feature injection scenario.
The results of our model are reported in Tab. V.

The positive coefficient for Tor in both Good Faith and Non-
Damaging scenarios indicates that Tor users are slightly better
contributors than our baseline of First-time editors by the
ORES measurement. Although the differences are statistically
significant, the estimated chance that a given edit will be
Good Faith at the baseline (new account) is 70.5%. whereas
the likelihood that an edit will be Good Faith if it originates
from a Tor editor is 72.5%. We believe that the estimated
2% margin is unlikely to be practically significant. For the
Non-Damaging model, we likewise find statistically significant

differences between Tor edits and our comparison groups but
also find that the practical effects are small. Our models predict
higher average rates of Non-Damaging edits for Tor editors
(60.1% for Tor editors versus 56.7% for First-time editors)
and IP editors (58.4%). For both models, contributions from
Registered editors are estimated to be of high quality, with a
prediction of 82.8% Good Faith and 72.1% Non-Damaging.
These results provide additional evidence in support of our
hypothesis that Tor editors, IP editors, and First-time editors
are quite similar in their overall behavior but that quality levels
of contributions from Registered editors are higher.

B. Comparison of Hand-coded Results to ORES Results

Given that we performed two different kinds of analysis
to identify Non-Damaging edits (i.e., hand-coding the edits,
and scoring via the ORES machine learning platform), we
can examine the extent to which these two measures agree.
Doing so is valuable because it can indicate whether the ORES
classifications used by Wikipedia are systematically biased
against contributors from Tor editors. As with our analysis
in §VI-A, we used feature injection to instruct ORES to treat
all edits in the hand-coded sample used in §V-E as if they
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these data to compare the ORES prediction with and without
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groups by generating receiver operating characteristic (ROC)
curves. We have included the full curves in our appendix in
Fig. 8.

Table VI reports model performance in the form of area
under the curves (AUC) for the ROC curves for each of
our comparison groups. These results indicate that there is
substantial room for improvement in ORES. Using feature
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when predicting the quality of edits performed by IP editors
(AUC = 0.811 for Non-Damaging), less well for Tor editors
(AUC = 0.758), and even less well for First-time editors
(AUC = 0.704) but, strikingly, worst for Registered editors
(AUC = 0.663).
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measure; we omit the Non-Damaging ORES model because
the lines are extremely similar. This visualization shows that
Tor, IP, and First-time editors are all comparable, with Tor
editors appearing to make slightly higher quality contributions
than First-time and IP editors, particularly in the latter parts
of the data. We used logistic regression to test for statistical
differences, treating First-time editors as the baseline category
as they most closely resemble our feature injection scenario.
The results of our model are reported in Tab. V.

The positive coefficient for Tor in both Good Faith and Non-
Damaging scenarios indicates that Tor users are slightly better
contributors than our baseline of First-time editors by the
ORES measurement. Although the differences are statistically
significant, the estimated chance that a given edit will be
Good Faith at the baseline (new account) is 70.5%. whereas
the likelihood that an edit will be Good Faith if it originates
from a Tor editor is 72.5%. We believe that the estimated
2% margin is unlikely to be practically significant. For the
Non-Damaging model, we likewise find statistically significant

differences between Tor edits and our comparison groups but
also find that the practical effects are small. Our models predict
higher average rates of Non-Damaging edits for Tor editors
(60.1% for Tor editors versus 56.7% for First-time editors)
and IP editors (58.4%). For both models, contributions from
Registered editors are estimated to be of high quality, with a
prediction of 82.8% Good Faith and 72.1% Non-Damaging.
These results provide additional evidence in support of our
hypothesis that Tor editors, IP editors, and First-time editors
are quite similar in their overall behavior but that quality levels
of contributions from Registered editors are higher.

B. Comparison of Hand-coded Results to ORES Results

Given that we performed two different kinds of analysis
to identify Non-Damaging edits (i.e., hand-coding the edits,
and scoring via the ORES machine learning platform), we
can examine the extent to which these two measures agree.
Doing so is valuable because it can indicate whether the ORES
classifications used by Wikipedia are systematically biased
against contributors from Tor editors. As with our analysis
in §VI-A, we used feature injection to instruct ORES to treat
all edits in the hand-coded sample used in §V-E as if they
were being made by newly Registered editors. We then used
these data to compare the ORES prediction with and without
feature injection to our manual assessment for all four user
groups by generating receiver operating characteristic (ROC)
curves. We have included the full curves in our appendix in
Fig. 8.

Table VI reports model performance in the form of area
under the curves (AUC) for the ROC curves for each of
our comparison groups. These results indicate that there is
substantial room for improvement in ORES. Using feature
injection, ORES performs best relative to our hand-coded data
when predicting the quality of edits performed by IP editors
(AUC = 0.811 for Non-Damaging), less well for Tor editors
(AUC = 0.758), and even less well for First-time editors
(AUC = 0.704) but, strikingly, worst for Registered editors
(AUC = 0.663).

When we examined a small sample of edits where our
hand-coding and ORES disagreed, we found there were often
good reasons for the disagreement. Our hand-coding process
included doing work that ORES does not do, such as noticing
when links were to personal or spam websites and weighing
the context of the edit on the page against our own understand-
ing of appropriate and correct encyclopedic content. These
results suggest that machine learning tools such as ORES have
a limited ability to assess the quality of edits without human
intervention.

Systematic bias in ORES could result in higher rates of
rejection of contributions from some groups of editors. Feature
injection as we have done it treats registered editors as if they
are new—essentially removing a “benefit of the doubt” based
on their longevity in the community. Table VI shows that fea-
ture injection has very modest effects on model performance—
dropping AUC by 0.01 for Registered editors and by 0.004

C Tran, K Champion, A Forte, BM Hill, R Greenstadt. Are anonymity-seekers just like everybody else? An analysis of

contributions to Wikipedia from Tor in 2020 IEEE Symposium on Security and Privacy (SP) Preprint:

https://arxiv.org/pdf/1904.04324.pdf

https://arxiv.org/pdf/1904.04324.pdf


Deep Dive: What were those contributions?

• Many typical edits:

• fact updating...

• typo fixes...

• and vandalism.

• Some contributions that suggest vulnerability:

• activism

• removing conspiracy theories

K Champion, N McDonald, S Bankes, J Zhang, R Greenstadt, A Forte, and BM Hill. A Forensic Qualitative Analysis of

Contributions to Wikipedia from Anonymity Seeking Users in Proceedings of the 2019 ACM Conference on Computer Supported

Cooperative Work and Social Computing (CSCW 2019). Preprint: https://arxiv.org/abs/1909.07929

14/24

https://arxiv.org/abs/1909.07929


Deep Dive: What were those contributions?

• Many typical edits:

• fact updating...

• typo fixes...

• and vandalism.

• Some contributions that suggest vulnerability:

• activism

• removing conspiracy theories

K Champion, N McDonald, S Bankes, J Zhang, R Greenstadt, A Forte, and BM Hill. A Forensic Qualitative Analysis of

Contributions to Wikipedia from Anonymity Seeking Users in Proceedings of the 2019 ACM Conference on Computer Supported

Cooperative Work and Social Computing (CSCW 2019). Preprint: https://arxiv.org/abs/1909.07929

14/24

https://arxiv.org/abs/1909.07929


Deep Dive: What were those contributions?

• Many typical edits:

• fact updating...

• typo fixes...

• and vandalism.

• Some contributions that suggest vulnerability:

• activism

• removing conspiracy theories

K Champion, N McDonald, S Bankes, J Zhang, R Greenstadt, A Forte, and BM Hill. A Forensic Qualitative Analysis of

Contributions to Wikipedia from Anonymity Seeking Users in Proceedings of the 2019 ACM Conference on Computer Supported

Cooperative Work and Social Computing (CSCW 2019). Preprint: https://arxiv.org/abs/1909.07929

14/24

https://arxiv.org/abs/1909.07929


Deep Dive: What were those contributions?

• Many typical edits:

• fact updating...

• typo fixes...

• and vandalism.

• Some contributions that suggest vulnerability:

• activism

• removing conspiracy theories

K Champion, N McDonald, S Bankes, J Zhang, R Greenstadt, A Forte, and BM Hill. A Forensic Qualitative Analysis of

Contributions to Wikipedia from Anonymity Seeking Users in Proceedings of the 2019 ACM Conference on Computer Supported

Cooperative Work and Social Computing (CSCW 2019). Preprint: https://arxiv.org/abs/1909.07929

14/24

https://arxiv.org/abs/1909.07929


Deep Dive: What were those contributions?

• Many typical edits:

• fact updating...

• typo fixes...

• and vandalism.

• Some contributions that suggest vulnerability:

• activism

• removing conspiracy theories

K Champion, N McDonald, S Bankes, J Zhang, R Greenstadt, A Forte, and BM Hill. A Forensic Qualitative Analysis of

Contributions to Wikipedia from Anonymity Seeking Users in Proceedings of the 2019 ACM Conference on Computer Supported

Cooperative Work and Social Computing (CSCW 2019). Preprint: https://arxiv.org/abs/1909.07929

14/24

https://arxiv.org/abs/1909.07929


Deep Dive: What were those contributions?

• Many typical edits:

• fact updating...

• typo fixes...

• and vandalism.

• Some contributions that suggest vulnerability:

• activism

• removing conspiracy theories

K Champion, N McDonald, S Bankes, J Zhang, R Greenstadt, A Forte, and BM Hill. A Forensic Qualitative Analysis of

Contributions to Wikipedia from Anonymity Seeking Users in Proceedings of the 2019 ACM Conference on Computer Supported

Cooperative Work and Social Computing (CSCW 2019). Preprint: https://arxiv.org/abs/1909.07929

14/24

https://arxiv.org/abs/1909.07929


Deep Dive: What were those contributions?

• Many typical edits:

• fact updating...

• typo fixes...

• and vandalism.

• Some contributions that suggest vulnerability:

• activism

• removing conspiracy theories

K Champion, N McDonald, S Bankes, J Zhang, R Greenstadt, A Forte, and BM Hill. A Forensic Qualitative Analysis of

Contributions to Wikipedia from Anonymity Seeking Users in Proceedings of the 2019 ACM Conference on Computer Supported

Cooperative Work and Social Computing (CSCW 2019). Preprint: https://arxiv.org/abs/1909.07929

14/24

https://arxiv.org/abs/1909.07929


But the bad stuff!

• Same four groups:

Newcomers

Anonymity-seekers using Tor

Contributors without accounts

Accountholders

• Lower rates of vandalism from Tor than

those without accounts

• Tor users challenged attempts to block

them

K Champion. Characterizing Online Vandalism: A Rational Choice Perspective in ACM International Conference on Social

Media and Society (SMSociety 2020). Preprint: https://arxiv.org/abs/2007.02199

[ “Broken Window 5688” C. Jim Choate. via flickr, CC BY-NC-ND 2.0 ]
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Successful Strategies for Remaining Open to Anonymity Seekers

1. Incorporate anonymity-seekers into the operational model

2. Reverse the tide: retain less information, not more

3. Block bad behavior without blocking Tor (nymble)

4. Make pseudonyms less “cheap”

5. Pre-publication moderation

C Tran, K Champion, BM Hill, R Greenstadt. The risks, benefits, and consequences of pre-publication moderation: Evidence

from 17 Wikipedia language editions in Proceedings of the ACM on Computer Supported Cooperative Work and Social

Computing (CSCW 2022). Preprint: https://arxiv.org/abs/2202.05548
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Success Example: Pre-publication Moderation
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Forthcoming and Future Work

1. Examining the value of anonymity in handling taboo subjects (Under Review)

2. Extending pre-publication moderation solutions (In Preparation)

3. Finding new settings and techniques for measuring the value of anonymity
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My case to you

People have good reasons to be anonymous online....

but platforms and communities may respond to them with suspicion

and not take up their perspective.
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My case to you

Anonymity-seekers are often comparable to other groups...

like newcomers and casual contributors.

They may offer some unique value or tackle riskier types of work.
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My case to you

When they act badly, it may be similar to bad

behavior we see from others...

although banning them for being an anonymity seeker

may make them angry, or trigger a desire to subvert the block....

and there are options for mitigating negative behaviors without banning.
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How can we respond?

• Challenge assumptions about

anonymity—in policies,

platforms, and research.

• Continue to innovate around

anonymity.

• Build partnerships between

platforms, research teams,

and communities.
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Let’s connect!

Curious about these results?

Anticipating changes in identity policies?

Interested in research about anonymity?

Let’s talk!

kaylea@uw.edu

@kayleachampion

social.coop/@kaylea

theanonymityproject.org

→ executive summary here: kayleachampion.com

This work was supported by the National Science Foundation (awards CNS-1703736 and CNS-1703049).
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